Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Intern Med ; 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2240696
2.
BMJ Open ; 12(6): e060664, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1879135

ABSTRACT

INTRODUCTION: The COVID-19 pandemic brought an urgent need to discover novel effective therapeutics for patients hospitalised with severe COVID-19. The Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis (ISPY COVID-19 trial) was designed and implemented in early 2020 to evaluate investigational agents rapidly and simultaneously on a phase 2 adaptive platform. This manuscript outlines the design, rationale, implementation and challenges of the ISPY COVID-19 trial during the first phase of trial activity from April 2020 until December 2021. METHODS AND ANALYSIS: The ISPY COVID-19 Trial is a multicentre open-label phase 2 platform trial in the USA designed to evaluate therapeutics that may have a large effect on improving outcomes from severe COVID-19. The ISPY COVID-19 Trial network includes academic and community hospitals with significant geographical diversity across the country. Enrolled patients are randomised to receive one of up to four investigational agents or a control and are evaluated for a family of two primary outcomes-time to recovery and mortality. The statistical design uses a Bayesian model with 'stopping' and 'graduation' criteria designed to efficiently discard ineffective therapies and graduate promising agents for definitive efficacy trials. Each investigational agent arm enrols to a maximum of 125 patients per arm and is compared with concurrent controls. As of December 2021, 11 investigational agent arms had been activated, and 8 arms were complete. Enrolment and adaptation of the trial design are ongoing. ETHICS AND DISSEMINATION: ISPY COVID-19 operates under a central institutional review board via Wake Forest School of Medicine IRB00066805. Data generated from this trial will be reported in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: NCT04488081.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Bayes Theorem , Humans , Pandemics , SARS-CoV-2 , Treatment Outcome
3.
Lancet Respir Med ; 10(1): 107-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1591647

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome , COVID-19 , Humans , Respiratory Distress Syndrome/therapy
4.
Clin J Oncol Nurs ; 25(5): E57-E62, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1468124

ABSTRACT

BACKGROUND: Research indicates that nurse navigators can play key roles in promoting empowerment for patients with cancer through advocacy, educational support, resource navigation, and psychosocial care. OBJECTIVES: This study attempted to elucidate the efficacy of nurse navigation in patient knowledge, care coordination, and well-being before a breast oncology appointment. METHODS: Staff provided a nine-question survey to 50 newly referred patients before their initial appointment. After survey completion, patients had the option to participate in an open-ended interview about their experience. FINDINGS: A greater proportion of patients with initial nurse navigation than those without felt informed before their appointment and thought that their care was effectively coordinated. Although some patients without nurse navigation experienced delays and confusion in scheduling their appointment, no patients with nurse navigators reported such issues.


Subject(s)
Breast Neoplasms , Patient Navigation , Appointments and Schedules , Female , Humans , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL